Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling

نویسندگان

  • Kun Xu
  • Yansong Feng
  • Songfang Huang
  • Dongyan Zhao
چکیده

Syntactic features play an essential role in identifying relationship in a sentence. Previous neural network models directly work on raw word sequences or constituent parse trees, thus often suffer from irrelevant information introduced when subjects and objects are in a long distance. In this paper, we propose to learn more robust relation representations from shortest dependency paths through a convolution neural network. We further take the relation directionality into account and propose a straightforward negative sampling strategy to improve the assignment of subjects and objects. Experimental results show that our method outperforms the state-of-theart approaches on the SemEval-2010 Task 8 dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers using Piecewise Convolutional Neural Networks

We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation significantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 te...

متن کامل

Combining Recurrent and Convolutional Neural Networks for Relation Classification

This paper investigates two different neural architectures for the task of relation classification: convolutional neural networks and recurrent neural networks. For both models, we demonstrate the effect of different architectural choices. We present a new context representation for convolutional neural networks for relation classification (extended middle context). Furthermore, we propose conn...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Multiple Range-Restricted Bidirectional Gated Recurrent Units with Attention for Relation Classification

Most of neural approaches to relation classification have focused on finding short patterns that represent the semantic relation using Convolutional Neural Networks (CNNs) and those approaches have generally achieved better performances than using Recurrent Neural Networks (RNNs). In a similar intuition to the CNN models, we propose a novel RNN-based model that strongly focuses on only importan...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015